If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+4x+156=0
a = -16; b = 4; c = +156;
Δ = b2-4ac
Δ = 42-4·(-16)·156
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10000}=100$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-100}{2*-16}=\frac{-104}{-32} =3+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+100}{2*-16}=\frac{96}{-32} =-3 $
| 4x-20+x=80 | | (1/243)^3x=9^-3x | | 15-y+3=18y | | 15=-24+t | | x+3/3=8 | | 8x-10-2x=4(x-5) | | -3(3s-4)-12=-3(8s+5)-5 | | 4x-9=3,5x-9 | | k-6k=4-10k+16 | | 16x^2+4x+156=0 | | 7n^2+n-11=-5 | | 7x-8=7x-x | | 2253.5=f | | 3x^2-45x=1350 | | −4.8x+6.4=−8.48 | | 9z-5=10z | | (9/4x^2-1)-(9/4x^2-3x+1)=0 | | 3x+13+40=80 | | 3x+13+40=180 | | 21=(7/3)y | | 3x+13+40=90 | | 2d-9=(d-4) | | 3x+13+40=10 | | 3t-6=t-3 | | 3x+13+40=123 | | 16(6x-3)=200 | | -9w+1=-7(w-1) | | 2x+x-9=90 | | 10-(4z-5)=7-5z | | 3g+4(-8+3g=1-g) | | 5/2x+1/4x+1=12 | | 4(x+3)-4=-8+10-4x |